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Abstract

Clusters of workstations have emerged as an important
platform for building cost-effective, scalable, and highly-
available computers. Although many hardware solutions
are available today, the largest challenge in making large-
scale clusters usable lies in the system software. In this pa-
per we present STORM, a resource management tool de-
signed to provide scalability, low overhead, and the flex-
ibility necessary to efficiently support and analyze a wide
range of job-scheduling algorithms. STORM achieves these
feats by using a small set of primitive mechanisms that are
common in modern high-performance interconnects. The
architecture of STORM is based on three main technical in-
novations. First, a part of the scheduler runs in the thread
processor located on the network interface. Second, we use
hardware collectives that are highly scalable both for im-
plementing control heartbeats and to distribute the binary
of a parallel job in near-constant time. Third, we use an
I/0 bypass protocol that allows fast data movements from
the file system to the communication buffers in the network
interface and vice versa.

The experimental results show that STORM can launch
a job with a binary of 12 M B on a 64-processor, 32-node
cluster in less than 250 ms. This paper provides experi-
mental and analytical evidence that these results scale to a
much larger number of nodes. To the best of our knowl-
edge, STORM significantly outperforms existing production
schedulers in launching jobs, performing resource manage-
ment tasks, and gang-scheduling tasks.
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Job Scheduling, Gang Scheduling, Parallel Architectures,
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1. Introduction

Recent improvements in commaodity processors and net-
works, combined with their attractive price/performance ra-

tio, have made clusters of workstations a popular form of
high performance computing. For example, RLX', Com-
pag? and HP3 have recently introduced high-density blade
servers that incorporate low-power processors. Several hun-
dreds of these processors can be integrated in a single rack,
and it is foreseeable that in the near future clusters with
thousands of processors will quickly move out of the bound-
aries of research labs and academic research and will be-
come widespread in the commercial world.

Although powerful hardware solutions are already avail-
able, the largest challenge to make these clusters usable lies
in the system software. The scalability of resource man-
agement, job scheduling, and job launching are important
aspects that are often overlooked.

Many run-time environments use a globally mounted file
system, such as NFS, when they have to move executables,
for example, when they spawn the processes of a job.* This
design, where potentially many clients are accessing a sin-
gle file on a single server at the same time is inherently
non-scalable. In such environments, the typical method of
launching a job is a shell script that loops over remote-shell
commands (that use TCP/IP), to start processes on remote
nodes. Although this is not a problem on small-scale clus-
ters, this approach can have severe performance and scal-
ability limitations on larger systems with several hundreds
(or possibly thousands) of nodes.

The ParPar [18] cluster environment addresses the prob-
lem of distributing control messages from a management
node to a set of clients by implementing a special-purpose
multicast protocol. This protocol, called Reliable DataGram
Multicast (RDGM), broadcasts UDP datagrams on the net-
work and adds selective multicast and reliability. Each data-
gram is prepended by a bit string that identifies the set of
destinations, and each node in the destination set sends an
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acknowledgment to the management node after the success-
ful delivery of the broadcast datagram. By using RDGM,
a job can be launched in a few tens of seconds on a cluster
with 16 nodes, with relatively good scalability.

GLUnix is an operating system middleware for clusters,
designed to provide transparent remote execution, load bal-
ancing, coscheduling of parallel jobs and fault detection. In
[15] the authors note that the overhead in the master node,
when forking a parallel job, increases by a small amount
(an average of 220 us per node). Also, one-to-many com-
munication patterns scale relatively well, at only 230 us per
node. When GLUnix launches a job, remote execution mes-
sages are sent from the management node to all the dae-
mons that will run the job. Each of these daemons generate
a reply message, indicating success or failure. When per-
forming remote execution to many nodes (more than 32, in
the experimental results shown in [15]) the replies from ear-
lier daemons in the communication schedule collide with
the remote execution requests sent to later daemons on the
switched Ethernet, causing a substantial performance degra-
dation. Thus, many-to-one communication patterns using
TCP/IP over Ethernet may exhibit poor scalability.

Scalability problems are already evident in ASCI-scale
machines, with thousands of nodes. The Computational
Plant (Cplant) at Sandia National Laboratories includes sev-
eral large-scale parallel computers composed of commod-
ity computing and networking components. In order to en-
hance scalability, Cplant uses a high-performance intercon-
nect, Myrinet [5], and a custom lightweight communication
protocol based on Portals [6]. When the run-time environ-
ment of Cplant launches a job, it first identifies a group of
active worker nodes, organizes them in a logical tree struc-
ture and then fans out the executable.

Many recent research results show that job scheduling al-
gorithms can substantially improve scalability, responsive-
ness, resource utilization and usability of a large-scale par-
allel machine [2] [12]. Unfortunately, the body of work de-
veloped in the last few years has not yet led to any practical
applications/implementations of such gang scheduling and
coscheduling algorithms in parallel clusters. We argue that
one of the main problems is the lack of flexible and effi-
cient run-time systems that can support the implementation
and evaluation of new scheduling algorithms, which are ex-
pected to replace conventional, space-shared, schedulers.

In this paper we present STORM (Scalable TOol for Re-
source Management). STORM provides a number of techni-
cal results that can pave the way to research advances in the
area of resource management and job scheduling. STORM
achieves these by using a software architecture that can ex-
ploit low-level network features for resource-management
tasks. Although STORM can be implemented over any
modern interconnect, we used the Quadrics network (Qs-
NET) [22] because its easy programmability and superb

performance. Large-scale clusters based on the QsNET
are already installed at CEA (France), LLNL, ORNL, PSC
(largest unclassified computer in the world), and LANL.

At the core of STORM there are three main technical
innovations. First, STORM’s management daemons can ex-
change control messages with a simple send/receive mech-
anism that uses the lowest-level interface of underlying in-
terconnect. In the case of QSNET, these can be executed
by threads that run in the thread processor of the network
interface. These threads can process incoming messages
and perform protocol processing without interrupting the
computing node. Second, STORM fully exploits hardware
support for broadcast for scalable dissemination of control
and synchronization messages (QSNET can also combine
the acknowledgments in the network switches). Third, the
processors in the network interface can be used for an ex-
tremely lightweight 1/0 by-pass protocol, that allows inter-
actions with the file system with almost no measurable over-
head on the processing nodes. These innovations, combined
with lightweight user-level daemons, translate to implemen-
tations of resource-management primitives that are low la-
tency and scalable. Another key feature of STORM is it
flexibility, designed to allow quick implementation and test-
ing of new scheduling algorithms. This paper also analyzes
the performance of gang-scheduling in STORM.

The rest of this paper is organized as follows. Sec-
tion 2 describes the architecture of STORM, the main de-
sign goals, and the interconnect features that are used by
STORM. In Section 3 we evaluate the performance of
STORM with a set of micro-benchmarks. We focus our
attention on two main aspects: job launching and gang
scheduling. Finally, some concluding remarks and future
directions are given in Section 4.

2. STORM Architecture

This section describes the architecture of STORM. The
main design goals for STORM were the following:

1. Provide resource management mechanisms that are
scalable, high-performance, and lightweight

2. Support the most of current and future job scheduling
algorithms.

To fulfill the first goal, we use a set loosely coupled daemons
that communicate with extremely fast messages. Coordina-
tion of the daemons is done through scalable strobes (heart-
beat messages) that use hardware multicast. For the second
goal, the daemons were designed so that modules for differ-
ent scheduling algorithms can be “plugged” into them. In
this paper, we focus on one of the most popular of these al-
gorithms, gang-scheduling (GS)[7, 21]. GS employs both
space sharing and time sharing to allocate resources to jobs.



All the processes of a given job run in the same allotted time
slot for the duration of the timeslice quantum and are then
context-switched to a different job in a cyclic manner at the
end of each time slot.

2.1. Overview of STORM

Several issues were considered crucial for STORM, and
were incorporated in its design and implementation:

1. Flexibility: The most important feature of STORM is
the ability to support many modern and future schedul-
ing algorithms in order to provide a valuable research
tool. STORM currently supports local scheduling,
First-Come-First-Served (FCFS or batch), FCFS with
backfilling, GS, and Spin-Block (implicit coschedul-
ing). Moreover, other scheduling methods can be read-
ily added to the system. In fact, our research directions
include the implementation of buffered coscheduling
(BCS) [8, 9] and other scheduling algorithms.

2. Scalability: STORM is designed so that most of
the scheduler operations are decentralized and asyn-
chronous, and the only two global operations, namely
job launching and strobes, are implemented by fast and
lightweight hardware multicasts.

3. Performance: By using fast user-level communica-
tion and a low-overhead implementation, STORM is
designed to be a lightweight, efficient scheduler.

4. Simplicity: The scheduler should not be over com-
plicated, so that maintenance and augmentation of
new scheduling algorithms will incur little overhead.
This implies that parallel applications should not be
changed to accommaodate the system, and at most need
only to be re linked.

5. Portability: The scheduler should be designed so that
porting it to other hardware platforms, interconnects or
even operating systems, will be relatively simple. To
this end, STORM runs entirely in user level with no op-
erating system modifications. Furthermore, the single
hardware-dependent module of STORM, the underly-
ing communication layer, is encapsulated in a small,
isolated module. As of this writing, STORM runs on
two hardware platforms (Intel x86 and Alpha EV6) and
two networks (QsNET and a generic MPI layer).

2.2. The Quadrics Network

The QsNET is based on two building blocks, a pro-
grammable network interface called Elan [26] and a low-
latency high-bandwidth communication switch called Elite
[27]. Elites can be interconnected in a fat-tree topology [19].

The Elan network interface links the high-performance,
multi stage Quadrics network to a processing node contain-
ing one or more processing elements (PEs). In addition to
generating and accepting packets to and from the network,
the Elan is equipped with a 32-bit thread processor, which
is used to aid the implementation of higher-level messaging
libraries without explicit intervention from the main CPU.
The other building block of the QsNET is the Elite switch.
The Elite provides the following features: (1) eight bidirec-
tional links supporting two virtual channels in each direc-
tion, (2) a full crossbar switch, (3) a transmission bandwidth
of 320 MBY/s per link and a flow through latency of 35 ns,
and (4) hardware support for collective communication.

Collective Communication Packets can be sent to multi-
ple destinations using the hardware multicast capability of
the network. A multicast packet can only take a pre deter-
mined path in order to avoid deadlocks. All nodes connected
to the network are capable of receiving the multicast packet
as long as the multicast set is physically contiguous. For
a multicast packet to be successfully delivered, a positive
acknowledgment must be received from all the recipients
of the multicast group. The Elite switches combine the ac-
knowledgments, as pioneered by the NYU Ultracomputer
[4] [24], returning a single one to the source. Acknowledg-
ments are combined in a way that the “worst” ACK wins (a
network error wins over an unsuccessful transaction, which
on its turn wins over a successful one), returning a positive
ACK only when all the partners in the collective communi-
cation complete the distributed transaction with success. An
in-depth experimental evaluation of the network [23] shows
that the broadcast bandwidth scales almost linearly with the
number of nodes, reaching an aggregate bandwidth that is
linear with the number of destination nodes. The same in-
frastructure can also be used to notify the end of a timeslice
in a gang scheduling or coscheduling algorithm.

2.3. Process Structure

STORM consists of three types of daemons that handle
job launching, scheduling, and monitoring: the Machine
Manager or MM (a single daemon on a management node),
the Node Manager or NM (one daemon per compute node)
and the Program Launcher or PL (several daemons per com-
pute node).

The MM is in charge of resource allocation for jobs (both
in space and time). Whenever a new job arrives, the MM
queues it and tries to allocate PEs to it (using a buddy tree
algorithm [10, 11]). If the scheduling policy allows for mul-
tiprogramming (e.g. GS), the PEs are allocated in any time
slot that has enough available resources. After a success-
ful allocation, the MM broadcasts a job-launch message to
all the NMs, and those NMs on nodes that are allocated to



the job will launch it when its time slot arrives (the han-
dling is done asynchronously). As an optimization, the MM
can also broadcast binary image and data files to the rele-
vant nodes before the execution of the program. Also, these
nodes can cache the files on local disk or RAM disk, so
that subsequent reruns can access the files locally. This op-
timization exploits the efficient hardware broadcast mecha-
nism, instead of the non scalable use of NFS for distributing
binaries. When a process of the job terminates, the MM re-
ceives an event from the corresponding NM, and frees the
resources allocated to it. Note that even though the MM
is centralized, in practice it does not create a bottleneck:
all the global operations it performs are done with scalable
hardware broadcasts and other operations such as reading a
new job, allocating resources to it, and receiving process-
termination notifications that are rare and lightweight.

NMs are responsible for managing resources on a single
node (which could be an SMP). NMs work asynchronously,
blocking until one of the following events arrive:

e Job launch: If the job pertains to the NM’s node, the
NM finds some available PLs and sends them the job
information.

e Job caching: The binary image is read from the com-
munication layer and stored in a file, preferably in a
RAM-disk file to avoid unnecessary 1/0.

e Heartbeat: The NM checks its local data structures,
for every PE, whether a context switch is required. If
so, it deschedules the current process (using UNIX’s
SIGSTOP) and resumes the next one.

e Process termination: upon receipt of such a message
from the PL, the NM passes it on to the MM.

Some scheduling algorithms require that the NM makes
its own local scheduling decisions. For example, in local
scheduling, the NM ignores context-switch messages, as the
local UNIX scheduler handles all scheduling decisions. In
algorithms such as BCS, the NM might deschedule a pro-
cess that is blocked for communication before the expiration
of the time slot, and schedule another process instead.

The PLs have the relatively simple task of handling in-
dividual application processes for the NM. One copy of the
PL runs for each PE and timeslot in a node, and sleeps until
it receives a program execution event from the NM. It then
proceeds to fork a new process, set up Quadrics commu-
nication capabilities for the application process (AP), redi-
rect standard output and error to the console that launched
STORM, and execute the AP. It then blocks with the wait
system call until the AP terminates, notifying the NM when
this happens.
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Figure 1. /O bypass mechanism. ker-
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2.4.1/0 bypass mechanism

We implemented a mechanism for alleviating one of
the major bottlenecks in program launching, the interaction
with the 1/O subsystem. The threads in the Elan network in-
terface can directly issue system calls that operate on the file
system, for example, opening, reading, writing, and closing
files. The relevant phases of the 1/0 bypass protocol during
the launch of a job are listed below (see Figure 1).

1. The MM sends a DMA message to a thread in the lo-
cal Elan NIC with the source file name and a remote
destination path.

2. The sender thread uses kernel traps to open and read
the source file. These traps go through the kernel, but
require very little CPU intervention, so that the pro-
cesses running on the processing node are not unaf-
fected.



3. The file is read in chunks directly into a communica-
tion buffer that can be efficiently accessed by the Elan
DMA engine, and then sent to a peer thread on all the
compute nodes, using the hardware multicast.

4. The sender thread uses two chunk buffers to pipeline
the reading and multicast operations, so that while one
buffer is being read, the other is being sent in parallel,
as shown in Figure 2.

5. The destination threads on the compute nodes queue
the incoming chunks and write them to the destination
path, using a flow-control protocol to avoid buffer over-
flows. File system writes and incoming multicasts can
proceed in parallel.

6. When all the chunks have been sent and written to
their respective local files, or conversely, if an error oc-
curred, the MM is notified.

7. When the MM decides to launch the job (after suc-
cessfully sending the binary and allocating resources to
it), it uses the new remote path name in the job-launch
message.

3. Experimental Results

In this section, we analyze the performance of STORM.
In particular, we (1) measure the costs of launching jobs in
STORM, and (2) test various aspects of the gang-scheduler
(effect of the timeslice quantum, node scalability, and mul-
tiprogramming level).

3.1. Experimental Framework

The hardware used for the experimental evaluation was
the ’crescendo’ cluster at LANL/CCS-3. This cluster con-
sists of 32 compute nodes (Dell 1550), one management
node (Dell 2550), and the Quadrics network equipped with a
128-port switch [29] (using only 32 of the 128 ports). Each
compute node has two 1.13 GHz Pentium-I1l with 1 GB
of ECC RAM, two independent 66MHz/64-bit PCI buses,
a Quadrics QM-400 Elan3 NIC [25, 26, 29] for data net-
work and an Ethernet-100 network adapter for management
network. All the nodes run under Red Hat Linux 7.1 with
Quadrics kernel modifications and user-level libraries.

The application we use for the experiments in Sections
3.3-3.3 is SWEEP [16], a time-independent, Cartesian-grid,
single-group, “discrete ordinates”, deterministic, particle-
transport code taken from the Department of Energy Ac-
celerated Strategic Computing Initiative (ASCI) workload.
SWEEP represents the core of a widely used method of
solving the Boltzmann transport equation. Estimates are
that deterministic particle transport accounts for 50—80% of

Main Processor Thread Processor

NFS | Local [ RAM-disk | NFS | Local | RAM-disk

[11.22]30.50 | 506.00 | 11.43] 315 | 120

Table 1. Read Bandwidth in MB/s fora 12 M B
Binary Image on NFS, Local-Disk, and RAM-
Disk .

the execution time of many realistic simulations on current
DOE systems.

In the tests that involve a multiprogramming level (MPL)
of more than one, we launch all the jobs concurrently (even
though this may not be a realistic scenario), to further stress
the scheduler.

3.2. Job Launching Time

In this set of experiments, we study the overhead associ-
ated with launching jobs with STORM and analyze its scala-
bility with the size of the binary size and number of PEs. We
use the approach taken by Brightwell et al. in their study of
job launching on Cplant [6] by measuring the time it takes to
run a program that terminates immediately, using different
binary sizes: 4 M B,8 M B, and 12 M B.

Anatomy of a job-launch The time taken for execution
of a parallel job can be broken down into the following four
components:

e Read Time: the time taken by the management node to
read the binary from the file system. This image can be
read through distributed file system like NFS, from a
local disk, or it can be cached in a RAM disk.®> Table 1
shows the read times of a 12 M B binary on a compute
node. We distinguish the two cases when a process or
an Elan thread try to read the file in order to expose the
performance of the 1/0 by-pass protocol. There is little
difference between main and thread processors in the
slow cases, namely NFS and the local disk. But pro-
cesses can take advantage of the RAM disks, getting
more than 500 MB/s, while the thread processor can
only get 120 MB/s. We still have not fully investigated
this asymmetry, which is influenced by the fact that the
thread processor resides on the slower, PCI bus.

e Broadcast Time: the time to broadcast the binary image
to all the compute nodes. This collective communica-
tion can take place in several ways, thus affecting how
the time is measured. For example, if the file is read

5The RAM disk is a segment of RAM configured to simulate a UNIX
file system. A RAM disk is expected to be faster than an actual disk drive.



Hardware Barrier Latency (Pittsburgh Supercomputing Center)
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Figure 3. Barrier synchronization latency as
a function of the number of nodes, Terascale
computing system, Pittsburgh supercomput-
ing center.

through a distributed file system like NFS, the distri-
bution time and file read time are intermixed. How-
ever, if a dedicated mechanism is used to disseminate
the file, like ParPar’s [18] or our own, this component
can be measured separately from the others. QsSNET
can broadcast messages in a scalable way and there
is no significant performance penalty when increas-
ing the number of nodes. The typical performance for
a main-memory-to-main-memory broadcast is around
200 MBY/s per node [23]. Figure 3 shows the scalability
of the hardware multicast (Section 2.2), on the Teras-
cale Computing System Installed at Pittsburgh Super-
computing Center (PSC), a cluster with 758 nodes. We
can see that the latency grows by a negligible amount,
about 2 us. This is a reliable indicator that the broad-
cast, implemented with the same hardware mechanism,
will scale efficiently.

e Write Time: write time is less critical than read time
because the file copy on the client nodes is followed
by an exec of the binary. Depending on how the kernel
is implemented, part of the binary can reside on the
buffer cache in memory at the time of the execution,
and it does not need to be flushed to disk.

e Execution overhead: some of the time for launching a
job in STORM is spent in allocating resources, waiting
for a new time slot to launch it, and possibly for another
time slot to run it. Events such as process termination
are also collected by the MM at STORM timeslice in-
tervals only, so a delay of up to 2 time-quanta is spent
in MM overhead.
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Figure 4. Send, execute and total launch times
for 4MB, 8MB, and 12MB files

Our implementation tries to pipeline the three delays: read
time, broadcast and write time, by dividing the file trans-
mission into chunks of 128 KB. Table 1 shows that the bot-
tleneck is the read time from disk in the management node,
which is 118 MB/s vs 200 MB/s for the broadcast. Based
on the scalability analysis reported in [23] and in Figure 3,
we believe that this will be the bottleneck in large-scale (up
to 4, 096 nodes) configurations too.

Launch times in STORM As described in Section 2,
STORM divides the job-launching task into two separate
operations: the sending (broadcasting) of the binary image,
which can be done before the designated time of running,
and the actual execution, which includes sending the job-
launch command, forking the job, waiting for its termina-
tion and reporting back to the MM. We measure the times
of both these tasks on the MM, as well as their sum (rep-
resenting the total time it takes to launch a job.) Figure 4
shows the time it takes to send each of the binaries, as well
as the time to execute them and the total time to launch the
job. Observe that the send times are roughly proportional to
the binary size, but do not grow significantly with the num-
ber of nodes. This can be explained by the highly scalable
hardware broadcast that is used for the send operation. On
the other hand, the execution times are quite independent of
the binary size, but grow slowly with the number of nodes.
One reason for this growth is the cumulative time it takes for
the MM to receive point-to-point notifications of the pro-
cess termination from all the NMs. Another reason for the
growth is the natural skew that occurs when jobs on differ-
ent nodes take slightly different time to terminate (because
of local UNIX considerations), thus statistically increasing
the total run time as the number of nodes increases. Be-
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cause the increase is relatively small,® we did not address
this issue for this version of STORM, but intend to replace
the termination collection mechanism with a more scalable
one, using Quadrics’ hardware support for collective com-
munication.

Launching on a loaded system To test how a heavily
loaded system affects the launch times of jobs, we added
two different programs that run in the background on all the
cluster’s nodes while measuring job-launch times. The first
program performs a CPU-intensive computation.

Figure 5 shows the results of launching the same three
binaries while the CPU-consuming program is running in
the background. We can see that although the execution
times remain nearly unaffected by the system’s load, the
send times are approximately doubled. This large increase
is mostly due to the interference of the computation with the
I/O activities (reads and writes). However, the total launch
time for all programs is still quite small, and it is less than
twice the launch time on an unloaded system.

The second program is designed to stress the entire net-
work, by pairing all the processes and continuously sending
long messages back and forth. This test is particularly in-
teresting, because a previous study [23] shows that a heav-
ily loaded network may have an adverse effect on collective
communications in the Quadrics interconnect. In Figure 6
we can see how running this program in the background af-
fects the launch time of the test binaries. Indeed, there is
a small, but noticeable, increase in the execution times —
due mostly to the increased delay in the delivery of termina-
tion messages from the NMs. However, the send operation

6Even with this exponential growth rate, it would still take less than
300 ms to launch a 12 M B binary on 4, 096 nodes.
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Figure 7. Total launch times for a 12 MB binary.

is considerably slower than on an unloaded system. This
agrees with the previous study, because the communication
part in the send operation is implemented by a Quadrics col-
lective.

Figure 7 summarizes the difference between the launch
times on loaded and unloaded systems. In this figure, the
total launch time is shown for the 12-MB file only, under
the three loading scenarios. Note that even in the worst sce-
nario, with a network-loaded system, it still takes only =~ 0.6
seconds to launch a 12-MB file on 64 nodes, and the growth
rate of about 3.5% on every doubling of the nodes, suggest
it would take less than a second to launch this program on a
4,096-node machine (assuming the same growth rate).



3.3. Gang Scheduling Perfor mance

Effect of Timeslice We first analyze the range of usable
timeslice values, to better understand the limits of the gang-
scheduler. For this experiment we use the SWEEP kernel,
which uses extensive computation and communication re-
sources. To test this, we modify the MM so that it does
not sleep between heartbeat messages, but rather uses busy
waiting. This requires that the MM have its own dedicated
PE, so as not to interfere with the AP, but gives us the possi-
bility of using timeslices smaller than the operating system
resolution, in this case, one 1A-32 Linux Jiffy, or 10 ms.
Figure 8 shows the runtime for running SWEEP with the
same input for various timeslices, up to 1.6 seconds, running
on 32 PEs, with an MPL of 2. The smallest timeslice value
that the scheduler can handle gracefully is ~ 2ms, below
which the NM cannot process the incoming strobe messages
at the rate they arrive. Note that this value is in the same or-
der of magnitude of the local Linux scheduler’s quantum
or less, and approximately two orders of magnitude smaller
than the smallest timeslice quantum reported in the liter-
ature [17, 14]. This allows for good system responsive-
ness, and usage of the parallel system for interactive jobs.
Furthermore, a short quantum allows the implementation
of advanced scheduling algorithms that can benefit greatly
from short timeslice quanta, such as Buffered Coscheduling
(BCS) [8, 9], Implicit Coscheduling (ICS) [1, 3], and Peri-
odic Boost (PB) [20]. STORM can handle such small times-
lice values due to the low-overhead processing of heartbeats
in the MM and NMs, and the low-latency multicast mecha-
nism provided by the Quadrics hardware.

From the graph we can see that starting from ~ 10 ms,
the observed run time grows as the timeslice grows. This
is caused by the fact that events, such as process launch
and termination reporting, only happen at timeslice inter-
vals. On the other hand, using very small timeslices in-
creases the overhead of context switching. The sweet spot
between maximum responsiveness and minimum overhead
is ~ 8ms.

Node Scalability and multiprogramming level An im-
portant metric of a resource manager is the scalability with
the number of nodes and PEs it manages, and with the mul-
tiprogramming level. To test this, we measured the effect on
the runtime of the program when running on an increasing
number of nodes and under different MPLs. We use strong
scaling in the experiment, i.e., SWEEP runs the same input
on different numbers of nodes, and is thus expected to run
faster as the number of nodes increases. Figure 9 shows the
results for running the program on varying number of PEs
in the range 4 to 64, for MPL values in the range 1 to 4 (re-
sults are normalized by dividing the runtime of jobs by the
MPL, so that they are comparable on the same scale). The
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Runtime (sec)
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Timeslice (msec)

Figure 8. Effect of timeslice quantum with an
MPL of 2, on 32 PEs.

Runtime (sec)

Number of PEs

Figure 9. Effect of number of PEs on normal-
ized runtime, for MPL values of 1-4.

timeslice used for this experiment was 20 ms, providing a
fairly responsive system.

Two interesting properties can be observed from these re-
sults. First, we note that increasing the MPL not only does
not penalize the applications, but actually improves their
normalized performance. This is due to the fact that the
Quadrics communication library and hardware can overlap
some of the communication and computation of different
jobs [13, 14]. The context switch operation in STORM is
rudimentary, requiring very little computation to determine
the next process to run, suspending the current process and
resuming the next one. This is actually less work than the
UNIX scheduler typically takes for a context switch [28] so
we may expect it to incur a small overhead. Thus, any over-
head that might be caused by context-switching, including



working-set penalties, are even smaller than the gain from
overlapping for an application like SWEEP. Another inter-
esting property is that this gain actually grows as the number
of PE increases. This is due to the fact that on the one hand,
the increased number of nodes (and subsequent communica-
tion in SWEEP) allows the system to overlap more compu-
tation and communication. On the other hand, the strobe is
implemented using a scalable hardware multicast operation
and thus it does not significantly increase the overhead as the
number of nodes grows. We can thus conclude that STORM
scales very well both with the number of nodes and the mul-
tiprogramming level on the system tested, and contrary to
intuition, using a multiprogramming level higher than one
actually benefits communication-intensive applications like
SWEEP.

4. Conclusions

In this paper we presented STORM, a flexible and
scalable resource-management tool for large-scale clusters.
With STORM we tried to prove the concept that it is possi-
ble to perform ultra fast resource management with latencies
well under a second even in the presence of high CPU uti-
lization or network congestion. The paper provided a num-
ber of technical guidelines on how to achieve these goals.

This paper also explored the performance of the gang-
scheduling algorithm implemented in STORM. We showed
that by using a set of loosely coupled daemons that exploit
fast hardware communication mechanisms, we can imple-
ment an extremely efficient scheduler. This scheduler can
handle timeslice quanta of less than 1 ms, providing respon-
siveness similar to that of the local UNIX scheduler. Fur-
thermore, the low overhead associated with STORM tasks
provides excellent scalability with the number of nodes.

We demonstrated that STORM encompasses major ad-
vances in resource management by using three novel tech-
niques: (1) employing NIC threads to relieve the resource-
manager from most communication tasks, (2) relying on
efficient hardware collectives to perform global operations
in a scalable way, and (3) using an 1/O bypass mechanism
that minimizes system overhead. The combination of these
methods decreases the job-launch time by two orders of
magnitude, thus making the system much more responsive
and usable.

It is our hope that the flexibility inherent in the design of
STORM will prepare the ground for new research results in
the area of resource management and scheduling for large-
scale parallel computers.

Futurework Our main venues of research include the im-
plementation and testing of new scheduling algorithms, in
order to address critical resource-management issues such
as reliability, load balancing, and system utilization. One

important point in this direction is the implementation of
user-transparent fault tolerance that seamlessly allows appli-
cations to resume execution even when nodes fail. Another
direction is the implementation of a flexible coscheduling
algorithm that can increase system utilization in the pres-
ence of load imbalance. We also plan to validate the scala-
bility of STORM on larger clusters.
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